

M. Nurul Islam

An Introduction to SAMPLING METHODS

Theory and Applications

Mullick & Brothers

ABOUT THE AUTHOR

Dr. M. Nurul Islam is former Selection Grade Professor of Statistics, Faculty of Science at the University of Dhaka, Bangladesh. Currently Dr. Islam is Pro-Vice Chancellor at the World University of Bangladesh. He joined the University of Dhaka as a Lecturer in 1971 and acted as Chairman of the Department of Statistics during 1985-1987. He held the coveted position of the Vice Chancellor of the Mawlana Bhashani Science and Technology University in Tangail during 2009-2013. He is an elected member of famed International Statistical Institute (ISI) of the Netherlands. Dr. Islam is now holding the position of President of the Bangladesh Statistical Association. He also held the same poison of the Association during 2010-2012. Dr. Islam was an elected member of the Dhaka University Senate for the period 2002-2004. He was also a part-time member of University Grants Commission during 2010-2012. During his 45 years' career as a teacher and researcher, he has written nearly one hundred scientific papers and survey reports related to his discipline, which have been published in both local and international journals. He has supervised a number of M.Sc and PhD works. He provided consultancy services to USAID, DANIDA, UNICEF, CIDA, CARE, SIDA, NETZ, Bangladesh Bureau of Statistics (BBS), Ministry of Health and Family Welfare and Ministry of Textile. He independently conducted a number of field surveys as a Principal Investigator. He extensively toured a number of countries including USA, UK, Canada, Egypt, Indonesia, Singapore, Nepal and India and presented papers there in conferences and seminars. He is author of four textbooks entitled (i) An Introduction to Statistics and Probability, (ii) An Introduction to Research Methods, (iii) An Introduction to Sampling Methods and (IV) An Introduction to Demographic Techniques published by Mullick & Brothers. The author has also published his entire research works in a single volume entitled Demographic Research in Bangladesh: An Update, with the financial assistance from Social Science Research Council, Ministry of Planning. He has been an Executive Editor of several national and international peer reviewed journals. Dr. Islam is also the recipient of the UGC Award and the Dhaka University Faculty Award for 2007 and 2004 respectively for two of his incomparable textbooks.

CONTENTS

	IX	
	PREFACE	ΧI
1	INTRODUCTION	1
1.1	Concept of Sampling	1
1.2	Importance of Sampling	2
1.3	Sampling: Historical Perspectives	3
1.4	Technical Terms	4
1.5	Sampling Frame	7
1.6	Census and Survey	7
1.7	Steps in Planning and Executing a Sample Survey	8
1.8	Advantages of Sampling over Complete Count	12
1.9	Limitations of Sampling	13
1.10	Sample Design and Survey Design	13
1.11	Evaluation of a Sample Design	14
1.12	Sampling with and without Replacement	16
1.13	Confidence Interval	18
1.14	Probability and Non-probability Sample	19
1.15	Sampling Distribution	20
2	SIMPLE RANDOM SAMPLING	24
2.1	Introduction	24
2.2	Properties of Simple Random Sampling	26
2.3	Drawing a Simple Random Sample	29
2.4	Estimation of Population Mean and Total	38
2.5	Properties of the Estimators	39
2.6	Relative Error of the Estimators	48
2.7	Improving the Estimates	58
2.8	Advantages and Disadvantages of SRS	59
3	MORE ON SIMPLE RANDOM SAMPLING	63
3.1	Introduction	63
3.2	Preliminaries	63
3.3	Variance of the Estimators	65
3.4	Estimating Sample Size in SRS	78
3.5	Developing a Formula for Sample Size	82
3.6	Sample Size for Estimating Population Proportion	83
3.7	Sample Size for Continuous Data	87
3.8	Problems in Estimating $C_y^2 \dots \dots \dots \dots$	91
3.9	Probability Proportional to Size Sampling in SRS	92

3.10 3.11	Estimated Variance for PPS Sampling Design Effect	102
4	STRATIFIED SAMPLING	108
4.1	0	108
4.1	Principles of Stratification	110
4.2	Steps Involved in Stratified Sampling	112
4.4	Estimators and Their Properties	114
4.4	Confidence Interval	13
4.6	Estimating Sample Size	134
4.7	Allocating Sample Size to Strata	139
4.8	Disproportionate Stratified Sampling	144
4.9	Precision of Stratified Sampling	162
4.10	Advantages and Disadvantages of Stratified Sampling	164
5	RATIO ESTIMATES	17
5.1	Introduction	171
5.2	Ratio Estimation under Simple Random Sampling	175
5.3	Variance of the Ratio Estimator	183
5.4	Sample Estimates of Variance	188
5.5	Confidence Interval	190
5.6	Measuring the Efficiency of Ratio Estimators	193
5.7	Bias in Ratio Estimation	198
5.8	Ratio Estimation in Stratified Sampling	204
5.9	Ratio Estimation under Modified Random	
	Sampling	210
5.10	Unbiased Ratio Type Estimator	216
5.11	Product Estimator	217
5.12	Multivariate Ratio Estimator	219
5.13	Comparing the Difference of Two Estimators	221
6	REGRESSION ESTIMATES	238
6.1	Linear Regression Estimator	238
6.2	Properties of Regression Estimators	241
6.3	Sampling Variance of Regression Estimator	244
6.4	Comparing Regression Estimator with Ratio and	
	Mean Per Unit Estimators	248
6.5	Bias of the Regression Estimator	251
6.6	Regression Estimator in Stratified Sampling	252
6.7	Limitations of Separate and Combined Estimators	261
6.8	Difference Estimator	261

6.9	Choice of Estimators	264
7	SYSTEMATIC SAMPLING	274
7.1	Introduction	274
7.2	How to Draw a Systematic Sample	275
7.3	Systematic Sampling in Relation to Other Designs	282
7.4	Advantages and Disadvantages of Systematic Sampling	283
7.5	Applications of Systematic Sampling	284
7.6	Sample Mean and Its Variance	284
7.7	Implications of ρ_w on $V(y_{sy})$	289
7.8	Comparison with Stratified Sampling	290
7.9	Relative Precision of Systematic Sample Mean	292
7.10	Estimating Population Characteristics	295
7.11	Estimated Variance	300
7.12	Systematic Sampling in Special populations	305
7.13	Repeated Systematic Sampling	312
7.14	PPS Approach in Systematic Sampling	315
8	SINGLE-STAGE CLUSTER SAMPLING	319
8.1	Introduction	319
8.2	Some Important Features of Cluster Sampling	321
8.3	Reasons for Using Cluster Sampling	322
8.4	Disadvantages of Cluster Sampling	322
8.5	Cluster Sampling in Relation to Other Designs	323
8.6	Applications of Cluster Sampling	324
8.7	Clustering Principles	324
8.8	Simple One-stage Cluster Sampling	326
8.9	Variance in Terms of Intra-class Correlation	334
8.10	Design Effect and Intra-class Correlation	337
8.11	Relationship between ρ, Deff. and M	337
8.12	Efficiency of Cluster Sampling	338
8.13	Optimum Cluster Size	345
8.14	Variable-Size Cluster Sampling	349
8.15	Cluster Sampling with PPS	357
8.16	Horvitz-Thomson Estimator	364
8.17	Estimation of Proportions in Cluster Sampling	377
8.18	Estimating Sample Size for Cluster Sampling	384
8.19	Relative Efficiency of Unequal Cluster	387
8.20	Use of Stratification in Cluster Sampling	388
8.21	Systematic Sampling Approach in Cluster Sampling	390

9	TWO-STAGE SAMPLING	394
9.1	Introduction	394
9.2	Drawing Two-stage Cluster Sampling	392
9.3	Advantages of Two-stage Sampling	396
9.4	Estimation of Population Mean and Total	398
9.5	A Simple Interpretation of Two-stage Sample	402
9.6	Estimating a Population Proportion	406
9.7	Estimates for Equal-Sized Clusters	412
9.8	Two-stage Sampling with PPS	420
10	FURTHER ASPECTS OF SAMPLING	428
10.1	Introduction	428
10.2	Non-probability Sampling	428
10.3	Multi-stage Sampling	434
10.4	Multi-phase Sampling	436
10.5	Post-stratification	441
10.6	Area Sampling	444
10.7	Acceptance Sampling	445
10.8	Pre-testing	445
10.9	Pilot Survey	444
10.10	Design Weight	447
10.11	Errors in Sample Survey	451
10.12	Estimation of Variance in Complex Designs	461
10.13	Questionnaire and its Construction	466
10.14	Steps Involved in Designing a Questionnaire	468
10.15	Important Surveys in Bangladesh: An Overview	470
10.16	Demographic Surveys	471
10.17	Contraceptive Prevalence Surveys (CPS)	474
10.18	Bangladesh Demographic and Health Survey	478
1019	Bangladesh Health and Demographic Survey	482
10.20	Health and Nutrition Survey	482
10.21	Bangladesh Child Nutrition Survey	485
10.22	Bangladesh Maternal Mortality Surveys	485
10.23	Labour Force Survey	487
10.23	Household Expenditure Survey	488
10.24	Bootstrapping	491
	RANDOM NUMBER	498
	BIBLIOGRAPHY	499
	SUBJECT INDEX	501

Chapter 1 INTRODUCTION

1.1 CONCEPT OF SAMPLING

During the past 30 years or so, the methods and techniques of sampling have reached a high level of scientific development. As a result, the uses of sampling have been extended into a wide variety of fields. From the standpoint of statistical data collection, sampling is a means for selecting a relatively small number of households, persons or other units for inclusion in a survey of some kind and inferring conclusions on the basis of these limited number of instances. This selection is done because enumeration of all units in the **target population** (population for which information is needed) is a large and complex undertaking that is almost always affected by limitations of time, budget and availability of experienced personnel. Not only that, it is unnecessary as well from the standpoint of precision and statistical reliability. Many countries have found, moreover, that sampling can play an important role in an overall census program (UN, 1997).

Let us now introduce the concept of sampling by an example.

EXAMPLE 1.1: Very frequently we talk about banning or restricting students' politics in the university campus. This is a very sensitive issue. We sometime wonder whether our views on this issue are shared by the student community, who are directly or indirectly involved in this important issue. We may want to know the actual percentage of students of Dhaka University who do not approve of banning students' politics in the campus. This percentage could be obtained by asking every student in the campus

inadequate. The works of Gosset appeared in Biometrika in 1908 under the name of 'Student', Gosset's pseudonym. (A famous story has it that Gosset was afraid to publish under his own name for fear that his employers, the Guinness Brewery, would be unhappy to discover that one of its chemists was doing research in statistics.) Today, student's t is a basic tool of statisticians and experimenters.

R. A. Fisher (1890–1962), who is known as the father of statistics, made numerous and significant contributions to statistics. He was influenced by Karl Pearson and Gosset, the two world known statisticians. His pioneering works made valuable contributions to evolve statistical procedures in many fields particularly agriculture, biology and genetics. He is known for his contribution in the field of Analysis of Variance and Experimental Design. Meanwhile, Francis Galton (1822–1921) gave the concept of **regression line** while working on heredity of men and laws governing the transmission of physical and mental characteristics from one generation to another'. His work was confirmed by his friend Karl Pearson.

The development of the theory of statistics was also effected by the pioneering works of a great number of authors, among whom Pareto, Adam, Edgeworth, Bowley, Yule, Stuart and Kendall deserve special mention.

J. Neyman (1894–1981) and E. S. Pearson (1895–1980) will remain ever known for their original contributions to the theory of testing statistical hypothesis in 1936 and 1938. This theory promoted considerable research works of practical use. Indian statistician Mahalanobis (1893–1972) contributed significantly to the field of sample survey. He is well known for his D^2 statistic. He established Indian Statistical Institute (ISI) in 1931 and founded **Sankhya**, an international journal in Statistics. Qazi Motahar Hussain (1897–1981), an authority in statistics, made significant contributions towards the development of statistics in Bangladesh. He is known worldwide for his works 'Hussain Chain'. He was the founder of the Department of Statistics and the Institute of Statistical Research and Training at the University of Dhaka.

Deming's (1900–1993) philosophical thoughts towards improving the quality of manufactured products through statistical quality control techniques is noteworthy. Genichi Tagguci (1924–) promoted the use of experimental designs for product improvement.

CHAPTER

1

STATISTICS AND ITS ORIGIN

1.1 STATISTICS: ITS ORIGIN AND DEVELOPMENT

It is not precisely known how the word statistics was originated. However, most people believe that the term statistics, derived from word state, was used to refer to a collection of facts of interest to the state. Some believe that the word statistic has been originated from the Italian word statista, the French word statistique and the German word statistik. This background tends to suggest that the term statistics has its origin from the ancient time. At that time, the word statistics had been believed to be in use as an indicator or yardstick of a country's economic, political and social conditions. In this sense, the word statistics serves as an index of a country's overall condition. In modern days too, relevant statistical data are of immense importance to understand the level of development of a country. Presumably, all cultures that recorded history internationally also recorded statistics.

The term **statistics** is an old one. As people abandoned their nomadic way of life, and started to live in groups, they urgently felt the need to know each other's wealth, manpower, strength and position for their survival and safety. The group chiefs or rulers used to collect information on the above aspects in order to impose and levy tax to strengthen their economic condition. Caesar Augustus decreed that the entire world should be taxed.